Harness the full potential of AI with our comprehensive set of tools for data collection, analysis, and interaction.
Using Python and BeautifulSoup to scrape data from websites:
import requests from bs4 import BeautifulSoup def scrape_website(url): response = requests.get(url) if response.status_code == 200: soup = BeautifulSoup(response.text, 'html.parser') data = [item.text.strip() for item in soup.find_all('div', {'class': 'data'})] return data return [] url = "https://example.com" scraped_data = scrape_website(url) print(scraped_data)
Performing a GET request to an API using requests library in Python:
import requests def fetch_data(api_url): response = requests.get(api_url) if response.status_code == 200: return response.json() return {} api_url = "https://jsonplaceholder.typicode.com/todos/1" data = fetch_data(api_url) print(data)
Using NLTK to tokenize and process text data:
import nltk from nltk.tokenize import word_tokenize nltk.download('punkt') def process_text(text): tokens = word_tokenize(text) return tokens sample_text = "Hello, how are you today?" tokens = process_text(sample_text) print(tokens)
Interact with simulation using WebSim AI API:
import requests API_KEY = 'YOUR_API_KEY' HEADERS = {'Authorization': f'Bearer {API_KEY}'} def create_simulation(url, depth=2, max_pages=10): api_url = "https://api.websim.ai/v1/simulations" payload = { 'url': url, 'depth': depth, 'maxPages': max_pages } response = requests.post(api_url, headers=HEADERS, json=payload) return response.json() simulation = create_simulation("https://example.com") print(simulation)