RAG-LLMVQSM represents a groundbreaking fusion of Retrieval-Augmented Generation (RAG), Large Language Models (LLMs), and Quantum State Manipulation (QSM). This innovative approach leverages the power of quantum computing to enhance the retrieval and generation capabilities of traditional RAG systems, while seamlessly integrating with state-of-the-art LLMs.
The quantum component of RAG-LLMVQSM introduces several key enhancements:
import numpy as np
from qiskit import QuantumCircuit, Aer, execute
from transformers import AutoTokenizer, AutoModelForCausalLM
class QuantumRAG:
def __init__(self, num_qubits):
self.num_qubits = num_qubits
self.quantum_circuit = QuantumCircuit(num_qubits, num_qubits)
self.backend = Aer.get_backend('qasm_simulator')
def prepare_quantum_state(self, document_relevance):
# Encode document relevance into quantum state
for i, relevance in enumerate(document_relevance):
angle = np.arcsin(np.sqrt(relevance))
self.quantum_circuit.ry(2 * angle, i)
def apply_quantum_operations(self):
# Apply quantum operations for enhanced retrieval
self.quantum_circuit.h(range(self.num_qubits)) # Superposition
self.quantum_circuit.cz(0, 1) # Entanglement
# Quantum Fourier Transform
for i in range(self.num_qubits):
self.quantum_circuit.h(i)
for j in range(i + 1, self.num_qubits):
self.quantum_circuit.cp(np.pi / float(2**(j-i)), i, j)
def measure_quantum_state(self):
self.quantum_circuit.measure(range(self.num_qubits), range(self.num_qubits))
job = execute(self.quantum_circuit, self.backend, shots=1000)
result = job.result()
counts = result.get_counts(self.quantum_circuit)
return counts
class RAGLLMVQSM:
def __init__(self, llm_model="gpt-2", num_qubits=5):
self.tokenizer = AutoTokenizer.from_pretrained(llm_model)
self.model = AutoModelForCausalLM.from_pretrained(llm_model)
self.quantum_rag = QuantumRAG(num_qubits)
def retrieve_and_generate(self, query, document_relevance):
# Quantum-enhanced retrieval
self.quantum_rag.prepare_quantum_state(document_relevance)
self.quantum_rag.apply_quantum_operations()
quantum_retrieval_result = self.quantum_rag.measure_quantum_state()
# Process quantum retrieval result
retrieved_info = self.process_quantum_result(quantum_retrieval_result)
# Generate response using LLM
input_text = f"{query} {retrieved_info}"
input_ids = self.tokenizer.encode(input_text, return_tensors="pt")
output = self.model.generate(input_ids, max_length=100)
response = self.tokenizer.decode(output[0], skip_special_tokens=True)
return response
def process_quantum_result(self, quantum_result):
# Process the quantum measurement results
# This is a placeholder for more sophisticated processing
most_relevant = max(quantum_result, key=quantum_result.get)
return f"Retrieved information based on quantum state: {most_relevant}"
# Usage
rag_llmvqsm = RAGLLMVQSM()
query = "Explain the implications of quantum entanglement in information retrieval."
document_relevance = [0.8, 0.6, 0.3, 0.1, 0.2] # Example relevance scores
response = rag_llmvqsm.retrieve_and_generate(query, document_relevance)
print("Generated Response:", response)
The integration of LLMs with quantum-enhanced RAG offers several advantages:
This integration enables the system to generate responses that are not only linguistically coherent but also deeply informed by quantum-enhanced information retrieval.
The RAG-LLMVQSM system has potential applications across various domains:
As we continue to develop and refine RAG-LLMVQSM, several areas of focus emerge:
These directions present both exciting opportunities and significant challenges as we push the boundaries of quantum-enhanced language models and information retrieval systems.
Experience a simplified simulation of RAG-LLMVQSM in action: